Exercise 67

(a) Use a graph to estimate the absolute maximum and minimum values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum values.

$$
f(x)=x \sqrt{x-x^{2}}
$$

Solution

Since no domain is specified, the function's entire domain is used.

$$
\begin{gathered}
x-x^{2} \geq 0 \\
x(1-x) \geq 0 \\
0 \leq x \leq 1
\end{gathered}
$$

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x \sqrt{x-x^{2}}\right) \\
& =\left[\frac{d}{d x}(x)\right] \sqrt{x-x^{2}}+x\left[\frac{d}{d x}\left(\sqrt{x-x^{2}}\right)\right] \\
& =(1) \sqrt{x-x^{2}}+x\left[\frac{1}{2}\left(x-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(x-x^{2}\right)\right] \\
& =\sqrt{x-x^{2}}+x\left[\frac{1}{2}\left(x-x^{2}\right)^{-1 / 2} \cdot(1-2 x)\right] \\
& =\sqrt{x-x^{2}}+\frac{x(1-2 x)}{2 \sqrt{x-x^{2}}} \\
& =\frac{2\left(x-x^{2}\right)+x(1-2 x)}{2 \sqrt{x-x^{2}}} \\
& =\frac{3 x-4 x^{2}}{2 \sqrt{x-x^{2}}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve each equation for x.

$$
\begin{array}{rlrl}
3 x-4 x^{2} & =0 & 2 \sqrt{x-x^{2}} & =0 \\
x(3-4 x) & =0 & x-x^{2} & =0 \\
x=0 & \text { or } \quad 3-4 x & =0 & x(1-x)
\end{array}=0
$$

$x=0$ and $x=3 / 4$ and $x=1$ are within $0 \leq x \leq 1$, so evaluate f at these values.

$$
\begin{aligned}
f(0) & =(0) \sqrt{0-0^{2}}=0 & & \text { (absolute minimum) } \\
f\left(\frac{3}{4}\right) & =\left(\frac{3}{4}\right) \sqrt{\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}}=\frac{3 \sqrt{3}}{16} \approx 0.32476 & & \text { (absolute maximum) } \\
f(1) & =(1) \sqrt{1-1^{2}}=0 & & \text { (absolute minimum) }
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq x \leq 1$. The graph below illustrates these results.

